Rock Thread and V-thread Testing Report VERSION 1.0, 2021

ASPI

Rock Thread and V-thread Testing Report

Version 1.0 , 2021

Author: Grant Prattley

Over The Edge Rescue https://overtheedgerescue.com

© 2021. This work is licensed under a CC BY <u>4.0 license</u>.

For the latest version and for referencing purposes use:

Prattley, Grant. Rock thread and V-thread testing 2021. Over the Edge Rescue. Version 1.0, 2021. https://overtheedgerescue.com/canyoning/rock-thread-vthread-testing-2021/

Table of Contents

Introduction	4
Methods and Materials	5
Results	9
Analysis	11
Conclusions	13
References	14
Glossary of terms	14
Appendix 1: Loop testing	15
Appendix 2: Rock thread testing	63
Appendix 3: Rock V-thread testing	96

Introduction

A drilled thread in rock is a low-impact way to anchor for recreational and rescue purposes without leaving behind bolts.

The usual places for applying these anchors are caves and canyons; however, other rock-based disciplines could find this information equally applicable.

In a canyon, threads are a way to leave anchor rigging behind in a section affected by high flows and floods. The cord in a thread, if damaged, can be replaced. A bolt may be destroyed or completely broken off in a flood event. Additionally, threads are lighter weight for carrying up a hill to the start of the canyon, and you don't need to carry a drill each time you descend in the future.

Drilled thread

For rescues, threads allow us to put in additional anchors without leaving behind lots of bolts, just holes. Compared to removable bolts, threads are a cost-effective alternative, especially where you need lots of rigging, such as cave rescue.

In addition to rock threads, we undertook testing of rock V-threads. Where you have a blank face, could you drill a V in the rock much like you would in ice with ice screws (Ice V-thread equivalent = Abolokov). It is somewhat more difficult and time consuming to drill and thread, but it is possible.

Rock thread and V-thread anchors are part of the rigging toolbox for both recreational and rescue situations.

Standards and testing

The standard we are using for recreational is the New Zealand Canyoning Association Bolting Code of Practice. This standard states that 15kN should be a minimum construction standard for temporary anchors.

Rescue work system strength should be 20kN or more to give additional margin for higher potential forces.

Therefore, this testing aims to ascertain if the following meets or exceed the standards:

- Bends used to tie the loops,
- Cords used in the rock threads/V-threads,
- Rock strength of the threads/V-threads.

Methods and Materials

Methods

General setup methods

- New material was used for each test.
- Carabiners and rapides, where they were undamaged, were reused for multiple tests.
- All knots and bends had hand tension with all strands pulled tight.
- All tails were 4cm.

Slow pull tests

- Each testing series records the slow pull tests set up (see Appendix 1-3).
- The slow pull testing was in one location.
 - Aspiring Safety, 1/6 Burdale Street, Riccarton, Christchurch, New Zealand.
 - https://www.aspiring.co.nz/
- Vertical testbed 1.6m Electronic Universal Testing Machine, Model WDW-100
 - Maximum Test Force 100kN, sample rate 60 per second
 - Jinan Chuanbai Instrument Equipment Co Ltd

Rock boulder setup

- The top anchor thread in the rock (Greywacke river boulder) is Nautilus 8mm Dyneema/Polyester+Kevlar 30kN cord. The cord tied as a loop with a double fisherman's bend. The hole drilled is 12mm in diameter.
- The rock thread has a 12mm hole drilled 75mm long and 75mm from the front edge.

- The top anchor thread in the rock (Greywacke river boulder) is Nautilus 8mm Dyneema/Polyester+Kevlar 30kN cord. The cord is tied as a loop with a figure-8 rethread bend. The hole drilled is 12mm in diameter.
- The rock V-thread had a 12mm hole drilled at 75mm centres to form a V of 50 degrees (see below).

Materials

Beal 5mm Dyneema cord

- Diameter: 5mm, Weight: 23g/m
- Breaking strength: 15kN
- Materials: Dyneema core, Dyneema sheath
- Standards: EN 564
- Manufacturer: Beal sport.beal-planet.com

Aspiring 5mm Dyneema cord

- Diameter: 5mm
- Breaking strength: 15kN
- Materials: Dyneema core, Dyneema sheath
- Supplier: Aspiring Safety aspiring.co.nz

Nautilus 5mm Dyneema/Polyester cord

- Diameter: 5mm, Weight: 19g/m
- Breaking strength: 9.8kN
- Materials: Dyneema core, Polyester sheath
- Manufacturer: Nautilus Braids nautilusbraids.co.nz

Beal 5.5mm Dyneema/Nylon cord

- Diameter: 5.5mm, Weight: 23g/m
- Breaking strength: 18kN
- Materials: Dyneema core, Nylon sheath
- Standards: EN 564
- Manufacturer: Beal sport.beal-planet.com

Nautilus 6mm Dyneema/Polyester cord

- Diameter: 6mm, Weight: 26 g/m
- Breaking strength: 13.7kN
- Materials: Dyneema core, Polyester sheath
- Manufacturer: Nautilus Braids nautilusbraids.co.nz

PMI 7mm Nylon cord

- Diameter: 7mm, Weight: 33.2 g/m
- Breaking strength: 11.9kN
- Materials: Nylon core, Nylon sheath
- Standards: EN 564
- Brand: PMI pmirope.com

PMI 8mm Nylon cord

- Diameter: 8mm, Weight: 42 g/m
- Breaking strength: 14.3kN
- Materials: Nylon core, Nylon sheath
- Standards: EN 564
- Brand: PMI pmirope.com

Nautilus 8mm Aborist Prusik cord

- Diameter: 8mm
- Breaking strength: 30kN
- Materials: Dyneema core, Polyester+Kevlar sheath
- Manufacturer: Nautilus Braids nautilusbraids.co.nz

PMI 10mm Classic Sport rope

- Diameter: 10mm, Weight: 66 g/m
- Breaking strength: 27kN
- Materials: Nylon core, Nylon sheath
- Standards: Cordage Institute 1801
- Brand: PMI pmirope.com

Kordas 10mm Dana rope

- Diameter: 10mm, Weight: 68 g/m
- Breaking strength: 27kN
- Materials: Nylon core, Nylon sheath
- Standards: EN1891:1998 Type A
- Brand: Kordas sacidkordas.com

Testing Results

Loop testing (Slow pull 100mm/minute)

Cord / Rope tested	Avg. kN 3 tests	Comment	Аррх. 1
Beal 5mm Dyneema 15kN double fisherman's bend	12.74	Broke inside the bend, tails slipped through both sides	<u>pg. 15</u>
Beal 5mm Dyneema 15kN triple fisherman's bend	18.55	Broke at the pin, tails almost slipped through, most core strands left intact (1) and broke at the bend one side, a few core strands left intact (2)	<u>pg. 18</u>
Aspiring 5mm Dyneema 15kN double fisherman's bend	18.54	Broke at the bend, a few core strands left intact	<u>pg. 21</u>
Aspiring 5mm Dyneema 15kN triple fisherman's bend	21.31	Broke at the bend, core only, sheath remained intact (2) and core and sheath, a few core strands left intact (1)	<u>pg. 24</u>
Nautilus 5mm Dyneema/ Polyester 10kN double fisherman's bend	13.59	Broke at the bend core slipped through sheath on one tail, the sheath broke on one side of the bend	<u>pg. 27</u>
Nautilus 5mm Dyneema/ Polyester 10kN triple fisherman's bend	15.51	Broke at the bend core slipped through sheath one tail, the sheath broke on both sides of the bend	<u>pg. 30</u>
Beal 5.5mm Dyneema/Nylon 18kN double fisherman's bend	13.38	Broke at the bend core slipped through sheath both tails (2) and one tail (1)	<u>pg. 33</u>
Beal 5.5mm Dyneema/Nylon 18kN triple fisherman's bend	17.26	Broke at the bend core slipped through sheath one tail, sheath broke on one side of bend (2) and sheath remained intact, core slipped through sheath both tails (1)	<u>pg. 36</u>
Nautilus 6mm Dyneema/ Polyester 14kN double fisherman's bend	17.71	Broke at the bend core slipped through sheath one tail, the sheath broke on one side of the bend	<u>pg. 39</u>
PMI 7mm Nylon 11.9kN double fisherman's bend	18.86	Broke at the pin	<u>pg. 42</u>
PMI 8mm Nylon 14.3kN double fisherman's bend	23.82	Broke at the bend (1) and broke at the pin (2), core slipped through sheath one tail	<u>pg. 45</u>
PMI 8mm Nylon 14.3kN figure-8 rethread bend	20.34	Broke at the bend (1) and broke at the pin (2)	<u>pg. 48</u>
Nautilus 8mm Dyneema/ Polyester+Kevlar 30kN double fisherman's bend	34.23	Sheath broke one side of the bend (2) and stripped sheath at the pin (1), core slipped through sheath one tail	<u>pg. 51</u>
Nautilus 8mm Dyneema/ Polyester+Kevlar 30kN figure-8 rethread bend	33.44	Sheath broke one side of the bend, core slipped through sheath one tail	<u>pg. 54</u>
PMI 10mm Classic Sport Nylon 27kN double fisherman's bend	36.71	Broke at the bend (1) and broke at pin (2)	<u>pg. 57</u>
Kordas 10mm Dana Nylon 27kN double fisherman's bend	32.24	Broke at the pin	<u>pg. 60</u>

Rock thread testing (Slow pull 100mm/minute)

Items tested	Avg. kN 3 tests	Comment	Appx. 2
Beal 5mm Dyneema 15kN triple fisherman's bend	18.58	Broke at the bend (2) and at the pin (1), minor damage to cord at thread both sides	<u>pg. 63</u>
Aspiring 5mm Dyneema 15kN triple fisherman's bend	20.98	Broke at the bend, minor damage to the sheath both sides of the thread	<u>pg. 66</u>
Nautilus 5mm Dyneema/ Polyester 10kN triple fisherman's bend	12.90	Sheath broke on both sides of the bend, core slipped through sheath one tail (2/3), core shot damage to cord at thread one side, minor damage other side.	<u>pg. 69</u>
Beal 5.5mm Dyneema/Nylon 18kN triple fisherman's bend	16.95	Sheath broke on one side of bend (2/3), core slipped through sheath one tail, moderate damage to cord at thread both sides	<u>pg. 72</u>
Nautilus 6mm Dyneema/ Polyester 14kN double fisherman's bend	17.06	Sheath broke on one side of bend, core slipped through sheath one tail, core shot damage to cord at thread one side, minor damage other side	<u>pg. 75</u>
PMI 7mm Nylon 11.9kN double fisherman's bend	12.88	Broke at the thread one side, small damage to the other side. Significant damage at the pin (2/3)	<u>pg. 78</u>
PMI 8mm Nylon 14.3kN double fisherman's bend	17.41	Broke at the thread one side, small damage to the other side. Significant damage at the pin (2/3)	<u>pg. 81</u>
Nautilus 8mm Dyneema/ Polyester+Kevlar 30kN double fisherman's bend	33.78	Sheath broke one side of the bend, core shot damage to the sheath one side of the thread, minor damage the other side (2). Broke sheath and core one side of the thread, minor damage to the sheath other side of the thread (1)	<u>pg. 84</u>
Nautilus 8mm Dyneema/ Polyester+Kevlar 30kN double fisherman's bend test anchor	12-18kN	This cord was used as a thread to hold the rock in place for most of the testing. It underwent 18 tests with only moderate wear to the sheath.	<u>pg. 88</u>
PMI 10mm Classic Sport Nylon 27kN double fisherman's bend	26.78	Broke at rope exit of rock side opposite to bend, minor (1), moderate (1) and major (1) damage to the sheath other side	<u>pg. 90</u>
Kordas 10mm Dana Nylon 27kN double fisherman's bend	27.73	Broke at rope exit of rock side opposite to bend, moderate (1) and major (2) damage to the sheath other side	<u>pg. 93</u>

Rock V-thread testing

Slow pull tests (100mm/minute)

Items tested	Avg. kN 3 tests	Comment	Аррх. 3
Beal 5mm Dyneema 15kN triple fisherman's bend	16.41	Broke as the loop exited the rock on bend side (2) and at the 10mm carabiner (1), minor damage to sheath of cord at the top of the V and other side.	<u>pg. 96</u>
Aspiring 5mm Dyneema 15kN triple fisherman's bend	20.18	Broke at the pin, minor damage to the sheath all 3 corners of the V-thread (2), broke at exit of rock same side as the bend, minor damage to sheath of cord at the top of the V and other side (1)	<u>pg. 99</u>

Analysis

Loop testing

- When joining the loops with a bend to get above 15kN for recreational use:
 - <u>Triple fisherman's:</u> Beal 5mm Dyneema, Nautilus 5mm Dyneema/Polyester, Beal 5.5mm Dyneema/Nylon
 - <u>Double fisherman's</u>: Aspiring 5mm Dyneema, Nautilus 6mm Dyneema/Polyester, PMI 7mm Nylon
- When joining the loops with a bend to get above 20kN for rescue use:
 - Triple fisherman's: Aspiring 5mm Dyneema/Polyester
 - Double fisherman's or figure-8 rethread: PMI 8mm Nylon, Nautilus 8mm Dyneema/ Polyester+Kevlar
 - Double fisherman's: Kordas 10mm Dana Nylon, PMI 10mm Classic Sport Nylon

Rock thread testing

- The Beal 5mm Dyneema/Dyneema cord was over 18kN, and the Aspiring 5mm Dyneema/ Dyneema cord was over 20kN on average. The Dyneema sheath had high resistance to abrasion during the tests, with only minor damage on all corners. Recommended as a rock thread.
- The Beal 5.5mm Dyneema/Nylon, Nautilus 6mm Dyneema/Polyester, and PMI 8mm Nylon/ Nylon cords were over 15kN on average. The tests damaged the sheath, either a core shot or broke at the exit from the rock. Recommended as a rock thread for one-off use scenarios.
- The Nautilus 5mm Dyneema/Polyester and PMI 7mm Nylon/Nylon cords were under 15kN on average. The tests damaged the sheath with either a core shot or broke at the exit from the rock. Not recommended as a rock thread.
- The Nautilus 8mm Dyneema/Polyester+Kevlar cord was over 30kN on average. The tests caused moderate to major damage to the sheath with a core shot or broke at the exit from the rock. Recommended as a rock thread.
- The Nautilus 8mm Dyneema/Polyester+Kevlar cord was rigged as a thread to hold the test rock in place. One length underwent 18 tests ranging from 12-18kN with only moderate wear to the sheath. Recommended as a rock thread to be reused multiple times.
- The PMI and Kordas 10mm Nylon/Nylon ropes were over 25kN in average strength. All tests broke at the exit of the rock with minor to major damage to the sheath. If you don't have any suitable cord, the end of a rope will make an appropriate rock thread.

Rock V-thread testing

• The Beal 5mm Dyneema/Dyneema cord (average 16kN) and Aspiring 5mm Dyneema/ Dyneema cord (average 20kN) when tested with a 50 degree drill angle on the V had sufficient strength for the rock type tested. Recommended as a rock V-thread.

Conclusions

- 1. As a preference, for better abrasion resistance, use cords with either Dyneema or Kevlar in the sheath.
- 2. Nylon or polyester sheathed cords (or ropes) are only recommended for one-off descents or other similar uses. As such, the cord may need to be replaced after every use. (Note: refer to the analysis for recommended cords or ropes to use)
- 3. When comparing similar materials, the thicker the cord or rope, the better the performance.
- 4. As you are working at the edges, the rock may be less robust. You are recommended to join together a minimum of two drilled threads to form an anchor.

Notes:

- In the testing and analysis, we have only considered a single thread.
- When using two threads to form an anchor, you could argue that each loop would only take 50% of the force. If this were the case, each loop would only need to take 7.5kN (50% of the 15kN¹ anchor strength), and therefore it may be suitable to use alternate bends or cords.
- 5. I recommend to keep it simple and always tie a full-strength loop of 15kN or more for a single thread as:
 - You may not be able to share the load between the two anchors equally.
 - If you choose to go down to one anchor, you know that the rigging is suitable.
 - It gives you and other subsequent users a reasonable margin.
- 6. The test rocks were weathered hard Greywacke river boulders.
 - The test rock had a 12mm hole drilled 75mm long and 75mm from the front edge. This rock held 24 tests ranging from 12-33kN. This rock type was sufficiently strong with these dimensions.
 - The V-thread rock had a 12mm hole drilled at 75mm centres to form a V of 50 degrees.
 This boulder held 6 tests ranging from 15-21kN. This rock type was sufficiently strong with these dimensions.
- 7. This report does not cover the safe placement of threads. Seek advice from an experienced person to guide you through the process.
- 8. Rock thread and V-thread anchors are part of the rigging toolbox for both recreational and rescue situations.

References

- 1. NZCA. Bolting Code of Practice. http://nzcanyoningassociation.org/resources/#boltingcode
- 2. PMI. https://pmirope.com
- 3. Beal. https://sport.beal-planet.com/
- 4. Aspiring Safety. https://www.aspiring.co.nz/
- 5. Nautilus Braids. http://nautilusbraids.co.nz
- 6. Prattley, Grant. **Webbing in Hangers.** Over the Edge Rescue. Version 1.0, 2021. <u>https://overtheedgerescue.com/canyoning/webbing-in-hangers/</u>
- 7. Prattley, Grant. **Rock thread and V-thread testing 2021.** Over the Edge Rescue. Version 1.0, 2021. <u>https://overtheedgerescue.com/canyoning/rock-thread-vthread-testing-2021/</u>

Glossary of terms

Bends: Where two pieces of rope or webbing are tied together usually at their ends, with both playing an integral part. The load is pulling in-line through the bend. An example is a double fisherman's bend.

Max Force (kN): Maximum amount of tensile stress that the material can withstand before failure (rupture), such as breaking or permanent deformation.

Force (kN): In physics, force is the push or pull on an object with mass that causes it to change velocity (to accelerate). Force represents as a vector, which means it has both magnitude and direction. The SI unit of force is the newton (N).

Appendix 1: Loop testing

Beal 5mm Dyneema loop (DF)

Materials

• Beal 5mm Dyneema/Dyneema cord (15kN)

Test setup

• Tied a double fisherman's bend to form a loop

Test parameters

- Slow pull speed 100mm/minute
- Tested between 12mm pins

Results

Date	#	Max force (kN)	Comments
16/04/21	4*	13.27	Broke inside bend, tails slipped through both sides
16/04/21	5	12.86	Broke inside bend, tails slipped through both sides
16/04/21	6	12.08	Broke inside bend, tails slipped through both sides
Ave	rage	12.74	

* Sample 16/04/21 #4 shown on the following pages.

Test Date:	Friday, 16 April 2021
Max Force (kN):	13.27
Product Name:	Loop double fisherman's
Batch #:	4
Material:	5mm Beal Dyneema

2	Tested by:	Grant Prattley
AS		S 1 Pul
FIED	Signed:	Drank J

Beal 5mm Dyneema loop (TF)

Materials

• Beal 5mm Dyneema/Dyneema cord (15kN)

Test setup

• Tied a triple fisherman's bend to form a loop

Test parameters

- Slow pull speed 100mm/minute
- Tested between 12mm pins

Results

Date	#	Max force (kN)	Comments
16/04/21	7*	18.61	Broke at the pin, tails almost slipped through, most core strands left intact
16/04/21	8	18.19	Broke at the bend one side, a few core strands left intact
16/04/21	9	18.86	Broke at the bend one side, a few core strands left intact
Average '		18.55	

* Sample 16/04/21 #7 shown on the following pages.

Test Date:	Friday, 16 April 2021
Max Force (kN):	18.61
Product Name:	Loop triple fisherman's
Batch #:	7
Material:	5mm Beal Dyneema

ECAAS

Signed:

Srant Prove

Aspiring 5mm Dyneema loop (DF)

Materials

• Aspiring 5mm Dyneema/Dyneema cord (15kN)

Test setup

• Tied a double fisherman's bend to form a loop

Test parameters

- Slow pull speed 100mm/minute
- Tested between 12mm pins

Results

Date	#	Max force (kN)	Comments
27/07/21	1*	19.35	Broke at the bend, core and sheath, a few strands left intact
27/07/21	2	17.69	Broke at the bend, core and sheath, a few strands left intact
27/07/21	3	18.58	Broke at the bend, core and sheath, a few strands left intact
Average 1		18.54	

* Sample 27/07/21 #1 shown on the following pages.

Test Date:	Tuesday, 27 July 2021
Max Force (kN):	19.35
Product Name:	Loop double fishermans
Batch #:	1
Material:	5mm Aspiring Dyneema

0.0.0.1.1.1

Signed:

Srant F

Aspiring 5mm Dyneema Loop (TF)

Materials

• Aspiring 5mm Dyneema/Dyneema cord (15kN)

Test setup

• Tied a triple fisherman's bend to form a loop

Test parameters

- Slow pull speed 100mm/minute
- Tested between 12mm pins

Results

Date	#	Max force (kN)	Comments
27/07/21	4*	21.09	Broke at the bend, core only, sheath remained intact
27/07/21	5	21.02	Broke at the bend, core only, sheath remained intact
27/07/21	6	21.82	Broke at the bend, core and sheath, a few strands left intact
Ave	rage	21.31	

* Sample 27/07/21 #4 shown on the following pages.

Test Date:	Tuesday, 27 July 2021
Max Force (kN):	21.09
Product Name:	Loop triple fishermans
Batch #:	4
Material:	5mm Aspiring Dyneema

Machine has a current calibration certificate. www.aspiring.co.nz

0.0.0.1.1.1

Nautilus 5mm Dyneema/Polyester loop (DF)

Materials

• Nautilus 5mm Dyneema/Polyester cord (10kN)

Test setup

• Tied a double fisherman's bend to form a loop

Test parameters

- Slow pull speed 100mm/minute
- Tested between 12mm pins

Results

Date	#	Max force (kN)	Comments
14/08/20	13*	13.34	Broke at the bend, the core slipped through sheath one tail, the sheath broke on one side of bend
14/08/20	16	13.61	Broke at the bend, the core slipped through sheath one tail, the sheath broke on one side of bend
14/08/20	17	13.82	Broke at the bend, the core slipped through sheath one tail, the sheath broke on one side of bend
Ave	rage	13.59	

* Sample 14/08/20 #13 shown on the following pages.

Test Date:	Friday, 14 August 2020	
Max Force (kN):	13.34	
Product Name:	Double fisherman's loop	
Batch #:	13	
Material:	5mm Nautilus Dyneema/Polyester	

Signed:

0.0.0.1.1.1

Srant Presla

Nautilus 5mm Dynnema/Polyester loop (TF)

Materials

• Nautilus 5mm Dyneema/Polyester cord (10kN)

Test setup

• Tied a triple fisherman's bend to form a loop

Test parameters

- Slow pull speed 100mm/minute
- Tested between 12mm pins

Results

Date	#	Max force (kN)	Comments
16/04/21	1*	15.49	Broke at the bend, core slipped through sheath one tail, sheath broke on both sides of bend
16/04/21	2	14.95	Broke at the bend, core slipped through sheath one tail, sheath broke on both sides of bend
16/04/21	3	16.09	Broke at the bend, core slipped through sheath one tail, sheath broke on both sides of bend
Average '		15.51	

* Sample 16/04/21 #1 shown on the following pages.

Test Date:	Friday, 16 April 2021
Max Force (kN):	15.49
Product Name:	Loop triple fisherman's
Batch #:	1
Material:	5mm Nautilus Dyneema/Polyester

0.0.0.1.1.1

Signed:

Srant Frank

Beal 5.5mm Dynnema/Nylon loop (DF)

Materials

• Beal 5.5mm Dyneema/Nylon cord (18kN)

Test setup

• Tied a double fisherman's bend to form a loop

Test parameters

- Slow pull speed 100mm/minute
- Tested between 12mm pins

Results

Date	#	Max force (kN)	Comments
14/08/20	6*	12.84	Broke at the bend, sheath remained intact, core slipped through sheath both tails
14/08/20	7	13.6	Broke at the bend, sheath remained intact, core slipped through sheath both tails
14/08/20	8	13.69	Broke at the bend, sheath remained intact, core slipped through sheath one tail
Average		13.38	

* Sample 14/08/20 #6 shown on the following pages.

Beal 5.5mm Dynnema/Nylon Loop (TF)

Materials

• Beal 5.5mm Dyneema/Nylon cord (18kN)

Test setup

• Tied a triple fisherman's bend to form a loop

Test parameters

- Slow pull speed 100mm/minute
- Tested between 12mm pins

Results

Date	#	Max force (kN)	Comments
14/08/20	9*	17.22	Broke at the bend, core slipped through sheath one tail, sheath broke on one side of bend
14/08/20	10	17.31	Broke at the bend, sheath remained intact, core slipped through sheath both tails
14/08/20	11	17.24	Broke at the bend, core slipped through sheath one tail, sheath broke on one side of bend
Average		17.26	

* Sample 14/08/20 #9 shown on the following pages.

Test Date:	Friday, 14 August 2020
Max Force (kN):	17.22
Product Name:	Triple fisherman's loop
Batch #:	9
Material:	5.5mm Beal Dyneema / Nylon

ECAAS 1509001 CERTIFIED

Signed:

Grant Prattley Srant Prace

Nautilus 6mm Dynnema/Polyester loop

Materials

• Nautilus 6mm Dyneema/Polyester cord (13.7kN)

Test setup

• Tied a double fisherman's bend to form a loop

Test parameters

- Slow pull speed 100mm/minute
- Tested between 12mm pins

Results

Date	#	Max force (kN)	Comments
14/08/20	12*	17.20	Broke at the bend, core slipped through sheath one tail, sheath broke on one side of bend
14/08/20	14	17.95	Broke at the bend, core slipped through sheath one tail, sheath broke on one side of bend
14/08/20	15	17.98	Broke at the bend, core slipped through sheath one tail, sheath broke on one side of bend
Ave	rage	17.71	

* Sample 14/08/20 #12 shown on the following pages.

Test Date:	Friday, 14 August 2020
Max Force (kN):	17.2
Product Name:	Double fisherman's loop
Batch #:	12
Material:	6mm Nautilus Dyneema / Polyester

0.0.4.1.1.1

PMI 7mm Nylon loop

Materials

• PMI 7mm Nylon/Nylon cord (11.90kN)

Test setup

• Tied a double fisherman's bend to form a loop

Test parameters

- Slow pull speed 100mm/minute
- Tested between 12mm pins

Results

Date	#	Max force (kN)	Comments
14/08/20	21*	19.29	Broke at the pin
14/08/20	22	18.56	Broke at the pin
14/08/20	23	18.74	Broke at the pin
Ave	rage	18.86	

* Sample 14/08/20 #21 shown on the following pages.

Test Date:	Friday, 14 August 2020
Max Force (kN):	19.29
Product Name:	Double fisherman's loop
Batch #:	21
Material:	7mm PMI Cord

PMI 8mm Nylon Loop (DF)

Materials

• PMI 8mm Nylon/Nylon cord (14.30kN)

Test setup

• Tied a double fisherman's bend to form a loop

Test parameters

- Slow pull speed 100mm/minute
- Tested between 12mm pins

Results

Date	#	Max force (kN)	Comments
22/10/20	25	24.60	Broke at the pin
22/10/20	26	22.43	Broke at the pin
22/10/20	27	24.44	Broke at the bend
Ave	rage	23.82	

* Sample 22/10/20 #25 shown on the following pages.

4	Teeseeldbyy:	SGeanet Rhatdlesy
CAAS		C. C.
ERTIFIED	Signed:	Srant Susla
ASSALTMINT.		

PMI 8mm Nylon loop (F8RT)

Materials

• PMI 8mm Nylon/Nylon cord (14.30kN)

Test setup

• Tied a figure-8 rethread bend to form a loop

Test parameters

- Slow pull speed 100mm/minute
- Tested between 12mm pins

Results

Date	#	Max force (kN)	Comments
16/11/20	10*	20.68	Broke at the pin
16/11/20	11	19.91	Broke at the pin
16/11/20	12	20.43	Broke at the bend
Ave	rage	20.34	

* Sample 16/11/20 #10 shown on the following pages.

Test Date:	Monday, 16 November 2020
Max Force (kN):	20.68
Product Name:	Fig-8 rethread bend loop
Batch #:	10
Material:	8mm PMI Accessory Cord

8.9.4.1.7.1

Nautilus 8mm Dyneema/Polyester+Kevlar loop (DF)

Materials

• Nautilus 8mm (Arborist Prusik) Dyneema/Polyester+Kevlar cord (30kN)

Test setup

• Tied a double fisherman's bend to form a loop

Test parameters

- Slow pull speed 100mm/minute
- Tested between 12mm pins

Results

Date	#	Max force (kN)	Comments
05/07/21	1*	34.24	Sheath broke one side of the bend, sheath continued to slip, core slipped through sheath one tail
05/07/21	2	34.55	Sheath started to break one side of the bend, stripped sheath at the pin, sheath continued to slip, core slipped through sheath one tail
05/07/21	3	33.89	Sheath broke one side of the bend, sheath continued to slip, core slipped through sheath one tail
Ave	rage	34.23	

* Sample 05/07/21 #1 shown on the following pages.

Test Date:	Monday, 5 July 2021
Max Force (kN):	34.24
Product Name:	Loop double fisherman's bend
Batch #:	1
Material:	8mm Nautilus aborist prusik cord

Nautilus 8mm Dyneema/Polyester+Kevlar loop (F8RT)

S	low P	ull Test	Friction Test	Drop Test
a teria Nautilu cord (3	als Is 8mr 0kN)	n (Arborist Pı	rusik) Dyneema/Polyester+Kevlar	
est se Tied a f	tup figure	-8 rethread b	end to form a loop	
est pa Slow pu Tested Results	ull spe betwe	leters eed 100mm/r een 12mm pi	minute ns	
Date	#	Max force (kN)	Comments	
05/07/21	4*	32.91	Sheath broke one side of the bend, sheath continued to slip, core slipped through sheath one tail	
05/07/21	5	33.69	Sheath broke one side of the bend, sheath continued to slip, core slipped through sheath one tail	
05/07/21	6	33.73	Sheath broke one side of the bend, sheath continued to slip, core slipped through sheath one tail	
Ave	rade	33.44		

Test Date:	Monday, 5 July 2021	
Max Force (kN):	32.91	
Product Name:	Loop figure-8 rethread bend	
Batch #:	4	
Material:	8mm Nautilus aborist prusik cord	

0.0.4.1.1.1

Grant Prattley

Signed:

Srant Fo

PMI 10mm Classic Sport Nylon loop

Materials

• PMI 10mm Classic Sport Nylon/Nylon rope (27kN)

Test setup

• Tied a double fisherman's bend to form a loop

Test parameters

- Slow pull speed 100mm/minute
- Tested between 12mm pins

Results

Date	#	Max force (kN)	Comments
20/07/21	1*	37.57	Broke at the bend
20/07/21	2	35.88	Broke at the pin
20/07/21	3	36.69	Broke at the pin
Average 36.71		36.71	

* Sample 20/07/21 #1 shown on the following pages.

Test Date:	Tuesday, 20 July 2021
Max Force (kN):	37.57
Product Name:	Loop double fisherman's bend
Batch #:	1
Material:	PMI 10mm Classic Sport

Signed:

Srant Frank

Kordas 10mm Dana Nylon loop

Materials

• Kordas 10mm Dana Nylon/Nylon rope (27kN)

Test setup

• Tied a double fisherman's bend to form a loop

Test parameters

- Slow pull speed 100mm/minute
- Tested between 12mm pins

Results

Date	#	Max force (kN)	Comments
20/07/21	4*	32.87	Broke at the pin
20/07/21	5	31.33	Broke at the pin
20/07/21	6	32.51	Broke at the pin
Average 32.24		32.24	

* Sample 20/07/21 #4 shown on the following pages.

Test Date:Tuesday, 20 July 2021Max Force (kN):32.87Product Name:Loop double fisherman's bendBatch #:4Material:Kordas 10mm Dana

 Tested by:
 Grant Prattley

 Signed:
 Srant Prattley

Machine has a current calibration certificate. www.aspiring.co.nz

Q Q A L L T

Appendix 2: Rock thread testing

Beal 5mm Dyneema rock thread

Materials

• Beal 5mm Dyneema/Dyneema cord (15kN)

Test setup

- Passed the cord through a 75mmx12mm rock thread
- Tied a triple fisherman's bend to form a loop

Test parameters

- Slow pull speed 100mm/minute
- Tested between 12mm pins

Results

Date	#	Max force (kN)	Comments
16/04/21	10*	19.06	Broke at the bend, minor damage to cord at thread both sides
16/04/21	11	18.07	Broke at the pin, minor damage to cord at thread both sides
16/04/21	12	18.6	Broke at the bend, minor damage to cord at thread both sides
Average		18.58	

* Sample 16/04/21 #10 shown on the following pages.

Test Date:Friday, 16 April 2021Max Force (kN):19.06Product Name:Loop triple fisherman's rock threadBatch #:10Material:5mm Beal Dyneema

Aspiring 5mm Dyneema rock thread

Materials

• Aspiring 5mm Dyneema/Dyneema cord (15kN)

Test setup

- Passed the cord through a 75mmx12mm rock thread
- Tied a triple fisherman's bend to form a loop

Test parameters

- Slow pull speed 100mm/minute
- Tested between 12mm pins

Results

Date	#	Max force (kN)	Comments
27/07/21	7	21.23	Broke at the bend, minor damage to the sheath both sides of the thread
27/07/21	8*	20.78	Broke at the bend, minor damage to the sheath both sides of the thread
27/07/21	9	20.94	Broke at the bend, minor damage to the sheath both sides of the thread
Average 2		20.98	

* Sample 27/07/21 #8 shown on the following pages.

Test Date:Tuesday, 27 July 2021Max Force (kN):20.78Product Name:Rock thread loop triple fishermansBatch #:8Material:5mm Aspiring Dyneema

ECAAS

Signed:

Srant 6

Nautilus 5mm Dyneema/Polyester rock thread

Materials

• Nautilus 5mm Dyneema/Polyester cord (10kN)

Test setup

- Passed the cord through a 75mmx12mm rock thread
- Tied a triple fisherman's bend to form a loop

Test parameters

- Slow pull speed 100mm/minute
- Tested between 12mm pins

Results

Date	#	Max force (kN)	Comments
16/04/21	13*	11.95	Sheath broke on both sides of the bend, core shot damage to cord at thread one side, minor damage other side
16/04/21	14	13.67	Sheath broke on both sides of the bend, core slipped through sheath one tail, core shot damage to cord at thread one side, minor damage other side.
16/04/21	15	13.07	Sheath broke on both sides of the bend, core slipped through sheath one tail, core shot damage to cord at thread one side, minor damage other side.
Ave	rage	12.90	

* Sample 16/04/21 #13 shown on the following pages.

Test Date:	Friday, 16 April 2021	
Max Force (kN):	11.95	
Product Name:	Loop triple fisherman's rock thread	
Batch #:	13	
Material:	5mm Nautilus Dyneema/Polyester	

Beal 5.5mm Dyneema/Nylon rock thread

Materials

• Beal 5.5mm Dyneema/Nylon cord (18kN)

Test setup

- Passed the cord through a 75mmx12mm rock thread
- Tied a triple fisherman's bend to form a loop

Test parameters

- Slow pull speed 100mm/minute
- Tested between 12mm pins

Results

Date	#	Max force (kN)	Comments
16/04/21	16*	16.66	Sheath broke on one side of bend, core slipped through sheath one tail, moderate damage to cord at thread both sides
16/04/21	17	17.10	Sheath remained intact, core slipped through sheath one tail, moderate damage to cord at thread both sides
16/04/21	18	17.10	Sheath broke on one side of bend, core slipped through sheath one tail, moderate damage to cord at thread both sides
Average		16.95	

* Sample 16/04/21 #16 shown on the following pages.

Test Date:	Friday, 16 April 2021
Max Force (kN):	16.66
Product Name:	Loop triple fisherman's rock thread
Batch #:	16
Material:	5.5mm Beal Dyneema/Polyester

Nautilus 6mm Dyneema/Polyester rock thread

Materials

• Nautilus 6mm Dyneema/Polyester cord (13.7kN)

Test setup

- Passed the cord through a 75mmx12mm rock thread
- Tied a double fisherman's bend to form a loop

Test parameters

- Slow pull speed 100mm/minute
- Tested between 12mm pins

Results

Date	#	Max force (kN)	Comments
16/04/21	19	17.58	Broke at the bend, core slipped through sheath one side, sheath broke on one side of bend, core shot damage to cord at thread one side
16/04/21	20	16.43	Broke at the bend, core slipped through sheath one side, sheath broke on one side of bend, core shot damage to cord at thread one side
16/04/21	21*	17.18	Broke at the bend, core slipped through sheath one side, sheath broke on one side of bend, core shot damage to cord at thread one side
Average 17		17.06	

* Sample 16/04/21 #21 shown on the following pages.

Test Date:	Friday, 16 April 2021		
Max Force (kN):	17.18		
Product Name:	Loop double fisherman's rock thread		
Batch #:	21		
Material:	6mm Nautilus Dyneema/Polyester		

PMI 7mm Nylon rock thread

Materials

• PMI 7mm Nylon/Nylon cord (11.9kN)

Test setup

- Passed the cord through a 75mmx12mm rock thread
- Tied a double fisherman's bend to form a loop

Test parameters

- Slow pull speed 100mm/minute
- Tested between 12mm pins and a 10mm Maillon rapide

Results

Date	#	Max force (kN)	Comments
16/04/21	22	12.87	Broke at the thread one side, small damage to other side
16/04/21	23*	12.93	Broke at the thread one side, small damage to other side, significant damage to cord at the rapide
16/04/21	24	12.85	Broke at the thread one side, small damage to other side, significant damage to cord at the rapide
Ave	rage	12.88	

* Sample 16/04/21 #23 shown on the following pages.

Test Date:Friday, 16 April 2021Max Force (kN):12.93Product Name:Loop double fisherman's rock threadBatch #:23Material:7mm PMI Nylon/Nylon cord

Machine has a current calibration certificate. www.aspiring.co.nz

Q Q A S I.T

PMI 8mm Nylon rock thread

Materials

• PMI 8mm Nylon/Nylon cord (14.3kN)

Test setup

- Passed the cord through a 75mmx12mm rock thread
- Tied a double fisherman's bend to form a loop

Test parameters

- Slow pull speed 100mm/minute
- Tested between 12mm pins and a 10mm Maillon rapide

Results

Date	#	Max force (kN)	Comments
16/04/21	25*	17.79	Broke at the thread one side, small damage to other side, small damage to cord at the rapide
16/04/21	26	17.8	Broke at the thread one side, small damage to other side, significant damage to cord at the rapide
16/04/21	27	16.65	Broke at the thread one side, small damage to other side, significant damage to cord at the rapide
Average 17.41		17.41	

* Sample 16/04/21 #25 shown on the following pages.

ECAAS

Signed:

Srant 6

Nautilus 8mm Dyneema/Polyester+Kevlar rock thread

Materials

• Nautilus 8mm (Arborist Prusik) Dyneema/Polyester+Kevlar cord (30kN)

Test setup

- Passed the cord through a 75mmx12mm rock thread
- Tied a double fisherman's bend to form a loop

Test parameters

- Slow pull speed 100mm/minute
- Tested between 12mm pins

Results

Date	#	Max force (kN)	Comments
05/06/21	7*	35.37	Sheath broke one side of the bend, sheath continued to slip, moderate damage to sheath at the pin, moderate damage to the sheath one side of the thread, minor damage the other side
05/06/21	8	32.05	Broke sheath and core one side of the thread, minor damage to the other side
05/06/21	9	33.91	Sheath broke one side of the bend, sheath continued to slip, core shot damage to the sheath one side of the thread, minor damage the other side
Average 33.78		33.78	

* Sample 05/06/21 #7 shown on the following pages.

Appendix 2: Rock Thread Testing

Nautilus 8mm Dyneema/Polyester+Kevlar test anchor

Materials

• Nautilus 8mm (Arborist Prusik) Dyneema/Polyester+Kevlar cord (30kN)

Test setup

- Passed the cord through a 12mm rock thread
- Tied a double fisherman's bend to form a loop
- Use to anchor most of the rock thread tests (18)

Test parameters

- Slow pull speed 100mm/minute
- Tested between 12mm pins

Results

Date	#	Max force (kN)
16/04/21	10	19.06
16/04/21	11	18.07
16/04/21	12	18.6
16/04/21	13	11.95
16/04/21	14	13.67
16/04/21	15	13.07
16/04/21	16	16.66
16/04/21	17	17.10
16/04/21	18	17.10
16/04/21	19	17.58
16/04/21	20	16.43
16/04/21	21	17.18
16/04/21	22	12.87
16/04/21	23	12.93
16/04/21	24	12.85
16/04/21	25	17.79
16/04/21	26	17.8
16/04/21	27	16.65

PMI 10mm Nylon rock thread

Materials

• PMI 10mm Classic Sport Nylon/Nylon rope (27kN)

Test setup

- Passed the rope through a 75mmx12mm rock thread
- Tied a double fisherman's bend to form a loop

Test parameters

- Slow pull speed 100mm/minute
- Tested between 12mm pins

Results

Date	#	Max force (kN)	Comments
20/07/21	7*	26.79	Broke at rope exit of rock side opposite to bend, minor damage to the sheath other side
20/07/21	8	26.98	Broke at rope exit of rock side opposite to bend, moderate damage to the sheath other side
20/07/21	9	26.56	Broke at rope exit of rock side opposite to bend, major damage to the sheath other side
Average 26.78		26.78	

* Sample 20/07/21 #7 shown on the following pages.

Tested by: Grant Prattley ECAAS Signed: Srant Prattley Signed: Stant Prattley

Kordas 10mm Nylon rock thread

Materials

• Kordas 10mm Dana Nylon/Nylon rope (27kN)

Test setup

- Passed the rope through a 75mmx12mm rock thread
- Tied a double fisherman's bend to form a loop

Test parameters

- Slow pull speed 100mm/minute
- Tested between 12mm pins

Results

Date	#	Max force (kN)	Comments
20/07/21	10*	25.22	Broke at rope exit of rock side opposite to bend, moderate damage to the sheath other side
20/07/21	11	28.91	Broke at rope exit of rock side opposite to bend, major damage to the sheath other side with core shot
20/07/21	12	29.06	Broke at rope exit of rock side opposite to bend, major damage to the sheath other side with core shot
Average 2		27.73	

* Sample 20/07/21 #10 shown on the following pages.

Test Date:Tuesday, 20 July 2021Max Force (kN):25.22Product Name:Rock Thread Loop double fisherman's bendBatch #:10Material:Kordas 10mm Dana

Machine has a current calibration certificate. www.aspiring.co.nz

0.0.4.1.1.1

Appendix 3: Rock V-thread testing

Beal 5mm Dyneema rock V-thread

Materials

• Beal 5mm Dyneema/Dyneema cord (15kN)

Test setup

- The drilled V-thread holes formed a 50 degree angle inside the rock
- Pulled the rope through the rock V-thread
- Tied a triple fisherman's bend to form a loop

Test parameters

- Slow pull speed 100mm/minute
- Tested between 12mm pins and a 10mm steel carabiner.

Results

Date	#	Max force (kN)	Comments
16/06/21	1*	15.45	A small plate of rock on the bend side came off, broke the core of dyneema as the thread came out of the rock, significant damage to sheath, minor damage to sheath at the top of the V and other side exit
16/06/21	2	16.68	Cut completely the dyneema as the thread came out of the rock bend side, minor damage to sheath at the top of the V and other side exit
16/06/21	3	17.10	Broke at the 10mm steel carabiner, moderate damage to sheath bend side, minor damage to sheath at the top of the V and other side exit
Average		16.41	

* Sample 16/06/21 #1 shown on the following pages.

Test Date:Wednesday, 16 June 2021Max Force (kN):15.45Product Name:Rock V- thread loop triple fishermansBatch #:1Material:5mm Beal Dyneema

Aspiring 5mm Dyneema rock V-thread

Materials

• Aspiring 5mm Dyneema/Dyneema cord (15kN)

Test setup

- The drilled V-thread holes formed a 50 degree angle inside the rock
- Pulled the rope through the rock V-thread
- Tied a triple fisherman's bend to form a loop

Test parameters

- Slow pull speed 100mm/minute
- Tested between 12mm pins and a 10mm steel carabiner.

Results

Date	#	Max force (kN)	Comments
27/07/21	10*	18.84	Broke at the pin, minor damage to the sheath all 3 corners of the V-thread
27/07/21	11	21.61	Broke at the pin, minor damage to the sheath all 3 corners of the V-thread
27/07/21	12	20.09	Broke at exit of rock same side as bend, small surface slab of rock came free (80mmx40mmx7mm) minor damage to the sheath other 2 corners of the V-thread (this was the 6th test in the same V-thread)
Average 20		20.18	

* Sample 27/07/21 #10* shown on the following pages.

Test Date:Tuesday, 27 July 2021Max Force (kN):18.84Product Name:Rock V- thread loop triple fishermansBatch #:10Material:5mm Aspiring Dyneema

